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The problem of determining the ejection crater generated by an explosion in a two-layer medium is 
investigated within the framework of a pulse-hydrodynamic model (its solid-liquid variant) for plane and axial 
symmetry. The densities and critical velocities determining the ejection crater shape may be different in each 
layer. We search for the crater boundary numerically by the method of successive approximations using the 
method of boundary elements in each calculation step. This method has been previously used in calculations of 
crater profiles in homogeneous media [1-3]. For a two-layer medium, the problem of determining the ejection 
crater profile in an explosion of a cord charge has been investigated in a solid-liquid formulation using the 
method of conformal transformations [4--6] for the case of plane symmetry, and the layers were considered to 
be of the same density. 

This paper presents the profiles of craters produced by the action of spherical and infinite cylindrical 
sources, which simulate an explosive charge, in two-layer media with a strengthless upper layer. The calculation 
results for the action of spherical sources are compared with the results of experimental explosions of 
underwater surface explosive charges. 

In the solid-liquid formulation of the pulse-hydrodynamic model (PHM) for ejection explosion 
considered below, the medium is treated as an ideal incompressible liquid only in the region bounded by 
the crater profile, which is an absolutely rigid wall, within which the medium is at rest [7]. The crater profile 
is a streamline on which the condition is met  that  the tangential derivative of the potential is equal to the 
quantity called the critical velocity. 

For a two-layer medium, we can formulate the following boundary-value problem: determine an 
unknown section F1 + F3 of the boundary F (Fig. 1) such that  the function r satisfies the Laplace equation 

Aqo = 0, (I) 

in the region f~l q- f~2, the boundary conditions on F, and the continuity conditions for the normal velocity 
and pulse pressure at the interface: 

O~ol /Os  = vx on r~; (2a) 

O~ol/On = 0 on F1; (2b) 

O~o2/Os = v2 on Fa; (3a) 

Oqo2/On = 0 on F3; (3b) 

plqol = p2qo2 on r2; (4) 

O~oI/Oqn --= --Oqo2/On on ['2; (5) 

qo2 = 0 on r4; (6) 

qo2 = -~o0 on Fs. (7) 
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Fig. 1 

By virtue of symmetry,  Fig. 1 shows only the right-hand side of the crater profile: X and Y are the 
coordinates; F1 + F3 is the crater boundary; F2 is the interface; F4 is the free surface; F5 is the boundary 
of the explosive charge; s and n are the arc coordinate and the external normal to the crater boundary; ~o0 
is the potential on the charge boundary; pl, q~l, and vl and p2, qo2, and v2 are the densities, potentials, and 
velocities of the first and second layers, respectively; r0 is the radius of the pulse source; H is the thickness of 
the upper layer; d is the distance between the source's center and the free surface; and 7/and ~ are points on 
the boundary F. 

Converting to dimensionless variables in problem (1)-(7), i.e., x/H,  y /H,  ~oo/(vxH), ro/H, v2/vl, 
p2/pl, d/H, we can see that  for a two-layer medium with plane-parallel boundaries the coordinates x /H and 
y /H  depend on five dimensionless variables: ~0 = ~oo/(vlH), no = ro/H, ~2 = v2/vl, -fi2 = p2/pl, and 
d = d /g .  

Since part of the boundary is unknown and is to be determined, we are unable to obtain immediately 
a solution of problem (1)-(7) in the physical domain. Hence, to obtain the unknown boundary of the ejection 
crater, we use a numerical algorithm that  is similar to that  of [1-3] and based on the method of successive 
approximations using the method of boundary elements in each calculation step. 

In the first step, the initial boundary F1 + F3 of the crater is specified rather arbitrarily. Mixed 
boundary-value problem (1)-(7) for the Laplace equation with conditions (2b) and (35) is solved by the 
method of boundary elements, and the values of the potential and tangential velocities are found along the 
boundary F1 + F3 for this configuration of the region 1~i + 122. 

The values of the tangential velocities thus obtained are compared with conditions (2a) and (3a), which 
should be met  at the required boundary, and in the case of a difference the boundary of the region is shifted. 
Then we again solve the boundary-value problem, and so on. We stop the calculations when the difference 
between the tangential velocities along boundary sections F1 and ['3 and the given critical velocities vl and 
v2 becomes less than 1%. Note that  in the case considered below, when the critical velocity in the upper layer 
is vz = 0, boundary F3 does not move and is an extension of the interface. 

To solve the Laplace equation, we use the following equation (see, for example, [8]): 

c(~) ~(~) + f ~ (~)q* (~,rl) d r  (r/) = f q (r])~* (~,r]) d r  (r/), 
r F 

(s) 

where c (() is a constant that  is equal to 7/rr (7 is the solid angle at which surface F is viewed from point ~); 
(r/) and q (r/) are the potential and its derivative with respect to the external normal to the region fl at point 

r/E F; q;* ((, r/) is a solution of the Laplace equation [for plane symmetry q0* (~, r/) = -(1/~r) lnr (~, ,1) and for 
axial symmetry ~,* (~, ,7) = 1/(2~'r (~, r/)), where r (~, ,7) is the distance between points ~ and ,7]; q* = O~*/On. 

The boundary F is the contour of a cylindrical surface for plane symmetry and the contour of the 
generatrix of a rotational surface for axial symmetry. To solve Eq. (8) numerically, we use the Krylov- 
Bogolybov method [9], which involves the replacement of integral equations by a system of algebraic equations. 
The boundaries of regions ~1 and f~2 are divided into almost equal linear sections (boundary elements); ~ and 

358 



q are assumed to be constant in each element and their values are referred to the middles of the sections (nodal 
points); the elements at the interface coincide. Equation (8) is written in discrete form for each boundary 
element in regions f~l and ~2 and supplemented by conditions (4) and (5). Thus, a completely defined system 
of linear algebraic equations is obtained. 

To find the coefficients (integrands) of the resulting system of linear equations, we use the Simpson 
quadrature formula for boundary elements with 7/~ ~ and the analytical expressions of [8] for plane symmetry 
or the quadrature formula of [10] for axial symmetry (near point r /=  ~) for elements with 7/= ~. 

In each iteration, sections F] and F3 are moved in two steps. At first we fix the boundary element 
that is the nearest to the symmetry axis and then move the other elements, comparing the velocity v I at 
each element with the velocity vii at the first element on boundary r l  and with velocity v22 at the interface 
on boundary r3. In the process, we move the j th  element of the boundary along the normal to the element 
surface at the point of intersection with the (j + 1)th element by distances 

= t, kl (vj/ ll - 1), (9a)  

= b k l  ( i/ 22 - 1) (9b) 

for the first and the second layers, respectively. Here 1 i is the half-length of the j t h  element and kl is specified 
as a function of Vmax [the maximum value of Ivj - vnnl /vnn along the sections rn  (n = 1.2)]. The first two 
terms of expressions (9) are scale factors; the last specifies the direction and relative magnitude of boundary 
movement: the required boundaries move along the external normal for v I > vnn and along the internal one 
for vj < vnn. 

The next iteration begins when vmax > 0.1. To approximate the velocity along the required boundaries 
to the critical velocities for Vmax ~ 0.1, we extend or compress the boundaries of regions f~l and f~2 by 
comparing velocities vii and ~)22 with critical velocities vl and v2 in each subregion by the following formulas: 
for the first layer, 

k2 
x, = = i , l l ,  yi (yj + - I ,  

and for the second layer, 

xj = : j  ( ,22/ ,2)  k2, u, = (yj + - I (k2 = 0.I-0.3).  

To implement the method, a pacl~ge of FORTRAN-77 programs has been developed. The run-time 
of one iteration in calculations of crater profiles on an IBM 360 for N = 40 contour points does not exceed 6 
sec for the axisymmetric case and 4 sec for the plane case. The prescribed accuracy (1%) is usually attained 
after 20-30 iterations. A comparison of the crater profiles calculated by the Mgorithm developed with those 
found analytically for plane symmetry [6] shows that the maximum relative error in calculations of crater 
boundaries does not exceed 4% for N > 50 contour points. 

To verify the method, we calculate craters generated by explosmn of underwater surface charges. The 
calculated results are compared with experimental data on explosions of spherical charges with a mass of 
0.2-2.5 g [11, 12]. In this case, the upper layer (water) did not have strength; its critical velocity v2 = 0 and 
its density p2 -- 1 g /cm 3. The density of the lower layer P1 was equal to the density of the material used in 
the experiments (pl -- 1.2 g/cm 3 for plasticine and pl -- 2.6 g /cm 3 for a sand-cement composition [11, 12]). 
The upper layer thickness H / r o  was varied from 0 to 50 in the calculations. 

The first series of profile calculations is performed for craters produced by spherical sources. The pulse 
pressure on the charge surface is calculated using the approach of [13], according to which the expression for 
the kinetic energy of an ideal incompressible liquid with an internal pulse source of radius r0 was set equal to 
the effective part of the total explosion energy c~ (for sphere, it is 0.4 [14]). From the resulting equation, we 
found values of the pulse pressure and potential V~0 on the surface; the latter was found to be 1.59.103 m2/sec 
for a PETN charge with a density of 1.5 g/cm 3 and radius r0 = 1 m. The critical velocity vl is selected by 
comparing the depth of the calculated craters with that of experimental craters with upper layer thickness 
H/r0 = 5. It turned out that, in spite of the substantial difference in the strengths of these materials, the 
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critical velocities for both the plasticine and sand-cement mixture can be considered equal to 43.4 m/sec. 
This is apparently connected with the features of explosions of charges of small mass. 

In laboratory experiments [11] at a depth of H/ro > 2-3, crater formation occurred primarily by 
displacement and compaction of the bottom material without ejection of material. In practice (in explosion of 
a charge of large mass), craters are generated mainly by ejection of material from the epicenter. It is precisely 
this mechanism of crater formation that is included in the criterion for determination of crater profile in the 
solid-liquid formulation of the PHM. We did not change the potential on the source surface and the critical 
velocity as H/ro changed. 

The craters calculated for pulse sources in a two-layer medium are characterized by a large ejection 
index n (the crater radius R related to its depth h) and the crater edges are horizontally stretched and emerge 
smoothly on the interface level. When they are compared with the crater profiles calculated for pulse sources 
in a homogeneous medium (see, e.g., [7]), it is apparent that these two cases are qualitatively different, i.e., 
the crater in a homogeneous medium is compact and its edges approach the free surface at an angle of 1r/2. 
Similar distinctions are observed in experiments on explosion of surface charges on a free surface and in water, 
and also with changes in water depth H/ro [11]. 

Fig,ires 2-4 present calculated and experimental curves of the crater depths h and radii R referred to 
the ch~.rge radius r0 and of the volume V referred to the charge mass Q versus the depth H/ro (curves 1 
and the circles correspond to the calculation and experiment results, respectively, for pz = 1.2 g/cm 3, and 
curves 2 and the squares, for pz = 2.6 g/cm3). Comparison of the calculated and experimental curves of 
h/ro = f(H/ro) and R/ro = f(H/ro) shows their qualitative similarity. All the calculated dependences have 
optima, i.e., values of upper-layer thickness at which the functions have maxima. As in the experiments, an 
increase in the density of the material of the lower half-space leads to a decrease in the parameters of the 
calculated craters. 

At the same time, for a denser bottom material, the calculated optima fall on a smaller thickness of 
the upper layer, whereas the experiments show the reverse picture. This apparently results from the fact 
that the real destruction process of a medium under dynamic loading takes a finite time interval, which is 
known to increase with increasing strength and density of the material. Hence, for effective crater formation in 
explosions in a sand-cement mixture, it is necessary to maintain the explosion-product pressure for a longer 
time interval than in explosions in plasticine. In these experiments, the explosion-pulse duration increases 
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with increasing water depth and, therefore, for a sand-cement mixture optima occur at a greater depth than 
for plasticine. This factor is not considered in the PHM, which leads to a discrepancy between calculation 
and experiment results. 

When the critical velocity is such that the calculated crater depths are close to the experimental crater 
depth in most of the range of upper-layer depth H/ro, the calculated radii are smaller by a factor of ~_ 1.5 than 
those observed in experiments almost everywhere in the range of H/ro and the volumes are, on the contrary, 
greater by a factor of ~ 4-8. In this connection it should be noted that there are some differences between the 
calculated and experimental crater profiles, namely, the calculated crater has a wider middle base and a taper 
with an upward-directed vertex, which is typical for the PHM. Moreover, a pronounced effect can be exerted 
by the discrepancy between crater shaping under an explosion of a small charge and the criterion of crater 
profile determination included in the PHM, which was mentioned above in choosing the critical velocity. A 
calculation of the profile of a crater generated by explosion of an underwater surface charge under natural 
conditions [15] has shown that the discrepancy between the calculated and experimental crater parameters 
does not exceed 15% in this case. 

In blasting practice, extended explosive charges, along with concentrated charges, find wide use in 
ejection explosions. This paper presents calculations of the action of infinite cylindrical sources, which 
correspond to underwater explosions of extended surface charges. The results of these calculations are 
compared with those obtained previously for spherical sources. The critical velocities and densities are 
vl = 43.4 m/sec, v2 = 0, pl = 1.2 g /cm 3, and p2 = 1 g /cm 3, For a quantitative comparison of the results, 
the pulse pressure and potential on the surface of the cylindrical source were calculated in the same way as 
in the previous series of calculations for the spherical source; in this case we take into account that a = 0.2 
for the cylindrical source [16]. For a PETN charge with a density of 1.5 g /cm 3, the calculated potential on 
the surface of a cylindrical source of unit radius is ~0 = 1.86 �9 103 m2/sec. 

The crater profiles calculated for cylindrical sources and their variation with a change in the upper 
layer thickness are qualitatively similar to the profiles calculated for spherical sources. Figures 2-4 show the 
calculated crater parameters versus the thickness of the upper layer for explosions of spherical and cylindrical 
(curves 1 and 3) charges. For both cylindrical and spherical sources, all crater parameters at certain optimum 
values of H/ro have maxima which are more distinct and are attained at large depths. 

The linear dimensions of craters (depth h/ro and radius R/r0) for cylindrical sources are larger than 
those for spherical sources everywhere in the range of H/ro. In this case the ratio of the crater depths, which 
is ~_ 1.9 for H/ro = 2-5, decreases with increasing water depth and is ~_ 1.16 for H/ro = 50. The calculated 
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crater radii for cylindrical sources are larger than those for spherical sources by a factor of 1.7-2 everywhere 
in the range of H/to. Conversely, the crater volumes referred to the masses of charges that  are equivalent to 
the corresponding pulse sources are smaller for cylindrical sources than for spherical sources everywhere in 
the range of H/ro; their ratio is _ 1.93 for H/ro = 2 and grows to ~ 4 (for H/ro = 50) as the upper layer 
thickness grows. 

From a physical viewpoint, these results seem to be rather justified. The energy concentration per unit 
volume for a cylindrical pulse source is much greater than that  for a spherical source, and this explains the fact 
that in the first case the linear dimensions of the crater (R/r0 and h/ro) are larger than in the second case. 
At the same time, since the conversion of explosion energy to kinetic energy of the medium is less efficient in 
explosions of cylindrical charges compared with explosions of spherical ones (this is included in calculations 
by the coefficient a),  the explosion efficiency (crater volume V) referred to the total explosion energy (charge 
mass Q) in the first case is less than in the second case. As calculations show (Fig. 4), for H/ro = 2, the 
ratio V/Q almost coincides with the ratio of the coefficients a,  which is about 2; with increasing H/ro this 
proportion fails and for H/ro = 50 the ratio for a spherical source is ~_ 4 times as large as for a cylindrical 
source. From this viewpoint, at great water depths, the explosion efficiency is higher for concentrated surface 
charges than for linear ones. 

Thus, the algorithm developed allows us to calculate crater profiles in ejection explosion in two-layer 
media for linear and concentrated charges in a pulse-hydrodynamic formulation. Here we observe qualitative 
agreement between calculations and experiments (particularly for soft soils). Within the scope of the PHM, 
we can try to gain better  quantitative agreement with experimental results. For this, the influence of the 
interface and the free surface on the source (explosive charge) parameters should be taken into account. 
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